There is no age for learning

That could be a problem. Instead, it relied entirely on an algorithm that had taught itself to drive by watching a human do it. Getting a car to drive this way was an impressive feat. But what if one day it did something unexpected—crashed into a tree, or sat at a green light?

There is no age for learning

This work is available here free, so that those who cannot afford it can still have access to it, and so that no one has to pay before they read something that might not be what they really are seeking. But if you find it meaningful and helpful and would like to contribute whatever easily affordable amount you feel it is worth, please do do.

I will appreciate it. The button to the right will take you to PayPal where you can make any size donation of 25 cents or more you wish, using either your PayPal account or a credit card without a PayPal account.

The Concept and Teaching of Place-Value Richard Garlikov An analysis of representative literature concerning the widely recognized ineffective learning of "place-value" by American children arguably also demonstrates a widespread lack of understanding of the concept of place-value among elementary school arithmetic teachers and among researchers themselves.

Just being able to use place-value to write numbers and perform calculations, and to describe the process is not sufficient understanding to be able to teach it to children in the most complete and efficient manner.

A conceptual analysis and explication of the concept of "place-value" points to a more effective method of teaching it. However, effectively teaching "place-value" or any conceptual or logical subject requires more than the mechanical application of a different method, different content, or the introduction of a different kind of "manipulative".

And it is necessary to understand those different methods. Place-value involves all three mathematical elements. Practice versus Understanding Almost everyone who has had difficulty with introductory algebra has had an algebra teacher say to them "Just work more problems, and it will become clear to you.

You are just not working enough problems. Meeting the complaint "I can't do any of these" with the response "Then do them all" seems absurd, when it is a matter of conceptual understanding.

Chicago Tribune - We are currently unavailable in your region

It is not absurd when it is simply a matter of practicing something one can do correctly, but just not as adroitly, smoothly, quickly, or automatically as more practice would allow.

Hence, athletes practice various skills to make them become more automatic and reflexive; students practice reciting a poem until they can do it smoothly; and musicians practice a piece until they can play it with little effort or error.

And practicing something one cannot do very well is not absurd where practice will allow for self-correction. Hence, a tennis player may be able to work out a faulty stroke himself by analyzing his own form to find flawed technique or by trying different things until he arrives at something that seems right, which he then practices.

But practicing something that one cannot even begin to do or understand, and that trial and error does not improve, is not going to lead to perfection or --as in the case of certain conceptual aspects of algebra-- any understanding at all.

What is necessary to help a student learn various conceptual aspects of algebra is to find out exactly what he does not understand conceptually or logically about what he has been presented.

There are any number of reasons a student may not be able to work a problem, and repeating to him things he does understand, or merely repeating 1 things he heard the first time but does not understand, is generally not going to help him. Until you find out the specific stumbling block, you are not likely to tailor an answer that addresses his needs, particularly if your general explanation did not work with him the first time or two or three anyway and nothing has occurred to make that explanation any more intelligible or meaningful to him in the meantime.

There are a number of places in mathematics instruction where students encounter conceptual or logical difficulties that require more than just practice.

There is no age for learning

Algebra includes some of them, but I would like to address one of the earliest occurring ones -- place-value. From reading the research, and from talking with elementary school arithmetic teachers, I suspect and will try to point out why I suspect it that children have a difficult time learning place-value because most elementary school teachers as most adults in general, including those who research the effectiveness of student understanding of place-value do not understand it conceptually and do not present it in a way that children can understand it.

And they may even impede learning by confusing children in ways they need not have; e.

I-SAFE Home Content | iSAFE Ventures

And a further problem in teaching is that because teachers, such as the algebra teachers referred to above, tend not to ferret out of children what the children specifically don't understand, teachers, even when they do understand what they are teaching, don't always understand what students are learning -- and not learning.

There are at least two aspects to good teaching: It is difficult to know how to help when one doesn't know what, if anything, is wrong. The passages quoted below seem to indicate either a failure by researchers to know what teachers know about students or a failure by teachers to know what students know about place-value.

If it is the latter, then it would seem there is teaching occurring without learning happening, an oxymoron that, I believe, means there is not "teaching" occurring, but merely presentations being made to students without sufficient successful effort to find out how students are receiving or interpreting or understanding that presentation, and often without sufficient successful effort to discover what actually needs to be presented to particular students.

Search form

That is not always easy to do, but at least the attempt needs to be made as one goes along.Find an answer to your question min. speech on " for learning there is no age bar ".:)/5(41). Stepping Up Our Game: Re-focusing the Security Community on Defense and Making Security Work for Everyone.

Since the first Black Hat conference 20 years ago, the security community, industry and the world have changed to the point that it's time to re-examine whether we're .

Edexcel, a Pearson company, is the UK's largest awarding body offering academic and vocational qualifications and testing to schools, colleges, employers and other places of learning .

How to learn English well. Thanks to the advanced technology, English can be taught even online. There are no specific ways that can be applied to learn English, but there are tips on how to improve the language you speak. Nov 29,  · Not all the students at Lombard's Park View School are of grade school age these days. But some of them might be as up on computers as their grandchildren going to Park regardbouddhiste.com senior students are. Launching Young Readers Series. Our PBS series explores reading and writing development in young children. The programs feature top reading experts, best practices in the classroom, support for struggling learners and how parents can help their kids succeed.

Learning is a continuous process and the true learner always looks avenues to learn from anybody and everybody. There is no age bar for . Learning is a lifelong process, and few local groups know that better than the Explorers Lifelong Learning Institute of Salem State University.

The . Welcome to the U.S.

There is no age for learning

Department of Education’s Individuals with Disabilities Education Act (IDEA) website, which brings together IDEA information and resources from the Department and our grantees.

LEARNING HAS NO AGE BAR - Ankara Scene